Negative Surges in Open Channels: Physical and Numerical Modeling

نویسندگان

  • Martina Reichstetter
  • Hubert Chanson
چکیده

Negative surges can be caused by a sudden change in flow resulting from a decrease in water depth. In the present study, some physical experiments were conducted in a rectangular channel to characterize the unsteady free-surface profile and longitudinal velocity beneath a negative surge propagating upstream. The physical observations showed that, during the first initial instants, the celerity of the surge leading edge increased rapidly with time, while later the negative surge propagated upstream in a more gradual manner with a celerity decreasing slowly with increasing distance. The velocity data highlighted some relatively large turbulent fluctuations beneath the negative surge. The physical results were used to test the analytical solution of the Saint-Venant equations and some numerical models. The findings suggested that the negative surge propagation appeared relatively little affected by the boundary friction within the investigated flow conditions. DOI: 10.1061/(ASCE)HY.1943-7900.0000674. © 2013 American Society of Civil Engineers. CE Database subject headings: Storm surges; Open channel flow; Unsteady flow; Numerical models; Velocity. Author keywords: Negative surges; Unsteady open channel flow; Physical modeling; Numerical modeling; Water depth; Velocity;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative surge in open channel: physical, numerical and analytical modelling

Negative surges are caused by a sudden change in flow resulting from a decrease in water depth. New experiments were conducted in a horizontal channel (L = 12 m, W = 0.5 m) to record the unsteady water depth and turbulence in negative surges. The data were collected using video imagery, acoustic displacement meters and acoustic Doppler velocimetry (ADV). The experimental setup was designed to r...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Effects of Winds, Tides, and Storm Surges on Ocean Surface Waves in the Japan/east Sea

Wind driven oceanic surface waves have a major impact on marine activity, especially near the coastal regions. Strong winds associated with winter storms induce storm surges along the west coast of Japan. Combined high wind conditions, tides, and storm surges can have a tremendous impact on the surface wave fields. Accurate wave forecast becomes an important issue at various operational forecas...

متن کامل

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

A comparison between numerical and analytical modeling of ECAP

Recent developments in nanostructured products draw considerable attention to ultrafine grained materials. These materials are normally manufactured by different severe plastic deformation (SPD) methods. In the present study, analytical models and finite element method (FEM) are used to calculate strain imposed to a specimen that was deformed by equal channel angular pressing (ECAP). In additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013